Genome-Based Microsatellite Development in the Culex pipiens Complex and Comparative Microsatellite Frequency with Aedes aegypti and Anopheles gambiae
نویسندگان
چکیده
BACKGROUND Mosquitoes in the Culex pipiens complex are among the most medically important vectors for human disease worldwide and include major vectors for lymphatic filariasis and West Nile virus transmission. However, detailed genetic studies in the complex are limited by the number of genetic markers available. Here, we describe methods for the rapid and efficient identification and development of single locus, highly polymorphic microsatellite markers for Cx. pipiens complex mosquitoes via in silico screening of the Cx. quinquefasciatus genome sequence. METHODOLOGY/PRINCIPAL FINDINGS Six lab colonies representing four Cx. pipiens and two Cx. quinquefasciatus populations were utilized for preliminary assessment of 38 putative loci identified within 16 Cx. quinquefasciatus supercontig assemblies (CpipJ1) containing previously mapped genetic marker sequences. We identified and validated 12 new microsatellite markers distributed across all three linkage groups that amplify consistently among strains representing the complex. We also developed four groups of 3-5 microsatellite loci each for multiplex-ready PCR. Field collections from three cities in Indiana were used to assess the multiplex groups for their application to natural populations. All were highly polymorphic (Mean = 13.0 alleles) per locus and reflected high polymorphism information content (PIC) (Mean = 0.701). Pairwise F(ST) indicated population structuring between Terre Haute and Fort Wayne and between Terre Haute and Indianapolis, but not between Fort Wayne and Indianapolis. In addition, we performed whole genome comparisons of microsatellite motifs and abundance between Cx. quinquefasciatus and the primary vectors for dengue virus and malaria parasites, Aedes aegypti and Anopheles gambiae, respectively. CONCLUSIONS/SIGNIFICANCE We demonstrate a systematic approach for isolation and validation of microsatellites for the Cx. pipiens complex by direct screen of the Cx. quinquefasciatus genome supercontig assemblies. The genome density of microsatellites is greater in Cx. quinquefasciatus (0.26%) than in Ae. aegypti (0.14%), but considerably lower than in An. gambiae (0.77%).
منابع مشابه
aetiologic agents of West Nile encephalitis, Eastern equine encephalitis, Venezuelan equine encephalitis, Japanese encephalitis, St. Louis encephalitis, Ross River encephalitis, Murray Valley encephalitis, Rift valley
1. Justification for a Culex pipiens quinquefasciatus Genome Project. Culex species are important vectors of human pathogens in the United States and world-wide, including the aetiologic agents of West Nile encephalitis, Eastern equine encephalitis, Venezuelan equine encephalitis, Japanese encephalitis, St. Louis encephalitis, Ross River encephalitis, Murray Valley encephalitis, Rift valley fev...
متن کاملIn vitro and in vivo host range of Anopheles gambiae densovirus (AgDNV)
AgDNV is a powerful gene transduction tool and potential biological control agent for Anopheles mosquitoes. Using a GFP reporter virus system, we investigated AgDNV host range specificity in four arthropod cell lines (derived from An. gambiae, Aedes albopictus and Drosophila melanogaster) and six mosquito species from 3 genera (An. gambiae, An. arabiensis, An. stephensi, Ae. albopictus, Ae. aeg...
متن کاملMolecular cloning and characterization of the complete acetylcholinesterase gene (Ace1) from the mosquito Aedes aegypti with implications for comparative genome analysis.
Insensitive acetylcholinesterase (AChE) has been shown to be responsible for resistance to organophosphates and carbamates in a number of arthropod species. Some arthropod genomes contain a single Ace gene, while others including mosquitoes contain two genes, but only one confers insecticide resistance. Here we report the isolation of the full-length cDNA and characterization of the complete ge...
متن کاملComparative Genomics of Odorant Binding Proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus
About 1 million people in the world die each year from diseases spread by mosquitoes, and understanding the mechanism of host identification by the mosquitoes through olfaction is at stake. The role of odorant binding proteins (OBPs) in the primary molecular events of olfaction in mosquitoes is becoming an important focus of biological research in this area. Here, we present a comprehensive com...
متن کاملThe bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing.
The bursicon gene in Anopheles gambiae is encoded by two loci. Burs124 on chromosome arm 2L contains exons 1, 2, and 4, while burs3 on arm 2R contains exon 3. Exon 3 is efficiently spliced into position in the mature transcript. This unusual gene arrangement is ancient within mosquitoes, being shared by Aedes aegypti and Culex pipiens.
متن کامل